Computing with Expansions in Gegenbauer Polynomials

نویسنده

  • Jens Keiner
چکیده

In this work, we develop fast algorithms for computations involving finite expansions in Gegenbauer polynomials. We describe a method to convert a linear combination of Gegenbauer polynomials up to degree n into a representation in a different family of Gegenbauer polynomials with generally O(n log(1/ε)) arithmetic operations where ε is a prescribed accuracy. Special cases where source or target polynomials are the Chebyshev polynomials of first kind are particularly important. In combination with (nonequispaced) discrete cosine transforms, we obtain efficient methods for the evaluation of an expansion at prescribed nodes and for the projection onto Gegenbauer polynomials from given function values, respectively. AMS Subject Classification: 42C20, 65T50, 65Y20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems

We develop complex Jacobi, Gegenbauer and Chebyshev polynomial expansions for the kernels associated with power-law fundamental solutions of the polyharmonic equation on d-dimensional Euclidean space. From these series representations we derive Fourier expansions in certain rotationally-invariant coordinate systems and Gegenbauer polynomial expansions in Vilenkin’s polyspherical coordinates. We...

متن کامل

Single Level Multipole Expansions and Operators for Potentials of the Form r-Lambda

This paper presents the generalized multipole, local and translation operators for three dimensional static potentials of the form r, where λ is any real number. Addition theorems are developed using Gegenbauer polynomials. Multipole expansions and error bounds are presented in a manner similar to those for truncated classical multipole expansions. Numerical results showing error behavior versu...

متن کامل

Generalizations and Specializations of Generating Functions for Jacobi, Gegenbauer, Chebyshev and Legendre Polynomials with Definite Integrals

In this paper we generalize and specialize generating functions for classical orthogonal polynomials, namely Jacobi, Gegenbauer, Chebyshev and Legendre polynomials. We derive a generalization of the generating function for Gegenbauer polynomials through extension a two element sequence of generating functions for Jacobi polynomials. Specializations of generating functions are accomplished throu...

متن کامل

Gegenbauer Polynomials and Semiseparable Matrices

In this paper, we develop a new O(n logn) algorithm for converting coefficients between expansions in different families of Gegenbauer polynomials up to a finite degree n. To this end, we show that the corresponding linear mapping is represented by the eigenvector matrix of an explicitly known diagonal plus upper triangular semiseparable matrix. The method is based on a new efficient algorithm ...

متن کامل

The Spectral Connection Matrix for Any Change of Basis within the Classical Real Orthogonal Polynomials

The connection problem for orthogonal polynomials is, given a polynomial expressed in the basis of one set of orthogonal polynomials, computing the coefficients with respect to a different set of orthogonal polynomials. Expansions in terms of orthogonal polynomials are very common in many applications. While the connection problem may be solved by directly computing the change–of–basis matrix, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009